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ABSTRACT 

Regardless of presentation modality (visual, auditory, etc.), 
graphs often need to convey uncertainty about the data values. 
Visual graphs may use error bars or confidence intervals. How 
to convey uncertainty about the data in an auditory graph 
remains an issue. Fundamental questions need to be answered 
first, such as how much change in, say, pitch, represents a given 
level of uncertainty. Here we present the results of a study that 
validates the uncertainty-to-sound-parameter mappings that had 
been determined in a previous phase of the research. That 
earlier research utilized conceptual magnitude estimation to 
identify preferred auditory mappings and scalings for error and 
uncertainty [1]. The present study sought to evaluate and 
validate those mappings and scalings in an applied context.  
Participants listened to pairs of auditory stimuli, and reported 
which they felt more closely represented a given range of error. 
Results showed that participants selected the error scalings that 
had been identified in the prior research, over other higher or 
lower slope values. This supports the validity of the mappings 
and scalings, and also provides more support for the utility of 
the conceptual magnitude estimation procedure developed by 
Walker [2].

1. INTRODUCTION 

Data comprehension and statistical knowledge is becoming 
increasingly important in today’s data-rich world, and it is 
simply crucial if one wishes to pursue any sort of scientific 
career. Presenting data in a non-numerical summary format, 
such as a visual graph, is a staple of modern scientific 
communication. For students or scientists with visual 
impairment, or indeed anyone who is unable to see a visual 
graph, auditory graphs have been developed to help make data 
more accessible [3] [4]. In any graph, regardless of modality 
(visual, auditory, tactile, etc.), scientific rigor often requires 
there to be a representation of any uncertainty about the data 
values. Visual graphs may use error bars or confidence intervals, 
for example. How to convey uncertainty about the data in an 
auditory graph remains an under-studied problem. 
Unfortunately, this has meant that auditory error bars (and 
similar representations of uncertainty) have largely been omitted 
from sonifications and auditory graphs (but see [5]). 
Fundamental issues abound, such as how much change in, say, 
pitch, represents a given level of uncertainty. Here we present 
the results of a study that validates the uncertainty-to-sound-
parameter mappings that were determined in a previous phase of 
the research. This is foundational to being able to design 

effective auditory error bars or confidence intervals, as part of 
effective auditory graphs. 
       To begin to understand such auditory representations, our 
earlier phase of work utilized conceptual magnitude estimation 
in an attempt to develop optimal auditory mappings and scalings 
for error and uncertainty [1]. Whereas other conceptual 
magnitude estimation studies [e.g., 2] have used musical notes 
or pure tones, our recent work has utilized stimuli made from 
bandpass-filtered resonant noise [1].  This was because we 
anticipate that these mappings may one day be used in a wide 
range of tools and devices, many of which utilize notes or pure 
tones for other purposes.  For example, one of the most common 
data-to-sound mapping frameworks for auditory graphs varies 
pitch as the y-axis data changes, and uses time to represent the 
x-axis.  Existing software such as the Sonification Sandbox 
(which makes use of this mapping framework) would be able to 
easily incorporate these noise-based error-bar mappings without 
making any major changes to its existing structure [6].   
       Results of our previous study showed that participants had 
strong positive tempo mappings for both error and uncertainty.  
That is, for the majority of participants, as the tempo of a sound 
set increased, so too did their perception of how much error or 
uncertainty they felt it represented.  However, the results for the 
frequency dimension were more mixed (in order to give white 
noise a specific frequency, band pass filters were built around 
specific central frequencies with a 6 dB decay per octave). For 
the error dimension, 9 participants utilized a “positive” mapping 
(i.e. higher frequencies represented more error) and 5 utilized a
“negative” mapping (i.e. lower frequencies represented more 
error) (see [2] for more on these definitions).  This demonstrated 
a slight preference for a positive mapping, with both mappings 
being strong fits and possessing r2 values of over 0.90.  For the 
uncertainty dimension, the preferences were reversed, with 7 
participants preferring the negative mapping and 4 preferring the 
positive one.  Furthermore, though the negative mapping was 
preferred, it produced a less precise mapping than its positive 
counterpart, yielding an r2 of 0.88, lower than the 0.94 yielded 
by the positive mapping, despite drawing its data from a larger 
number of participants.   
       In order to determine the validity and usefulness of these 
mappings, in the research we report on here we adapted the 
slope validation procedure utilized by Walker [2]. All mappings 
(both positive and negative) were tested for frequency in this 
new experiment; however, for tempo only the positive mappings 
warranted testing, due to their preference by a clear majority of 
participants.  
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2. METHODS 

2.1 PARTICIPANTS 
Twenty-six Georgia Tech undergraduates participated for extra 
credit in introductory psychology courses. 

2.2 SOUND STIMULI  
There were two sets of stimuli, a frequency set and a tempo set.  
The three stimuli in the frequency set each consisted of a series 
of five 1 second long segments of bandpass-filtered resonant 
noise of set ascending central frequencies (each with a 6 dB 
decay per octave) separated by 0.25 seconds of silence.  The 
central frequency for the first sound of each frequency stimulus 
was 200 Hz, increasing over five equally spaced steps to final 
central frequencies of 400, 600, and 1000 Hz (central 
frequencies adapted from the pure tone frequencies utilized by 
Walker in his initial studies) [2].    Thus, the three stimuli in the 
frequency set were as follows: F1 consisted of central 
frequency steps of 200, 250, 300, 350, and 400 Hz, F2 
consisted of steps of 200, 300, 400, 500, and 600 Hz, and F3 
consisted of steps of 200, 400, 600, 800, and 1000 Hz.   
       The three stimuli in the tempo set were constructed in a 
similar manner with each stimulus having a starting tempo of 
60 bpm and taking equally spaced steps to final tempos of 120, 
180, and 300 bpm.  Each step consisted of white noise pulsing 
in an on/off pattern for 2 seconds per step and then proceeding 
on to the next step in the set.  The tempo set stimuli were as 
follows: T1 consisted of steps of 60, 75, 90, 105, and 120 bpm, 
T2 consisted of steps of 60, 90, 120, 150, and 180 bpm, and T3 
consisted of steps of 60, 120, 180, 240, and 300 bpm. 
       All sound stimuli were generated by Audacity v.1.3.14, 
with filters created by the LS Filter plugin.  Each step in each 
stimulus set was equated for equal loudness using the 
ReplayGain plugin.   

2.3 VALUE RANGES 
The purpose of Walker’s (2002) procedure is to demonstrate the 
validity of the mappings generated from conceptual magnitude 
estimation by taking value ranges generated from those 
mappings, and comparing them to value ranges that would not 
be ideal were the mappings accurate.  To do this, ideal final 
values (initial values were the same for each trial) for both error 
and uncertainty need to be generated for each of the six stimuli 
(F1, F2, F3, T1, T2, and T3).  To do this, the following 
equation was used: 

FV = IV • (S5/S1)m,    (1) 

In Equation (1), FV represents the ‘Final Value’ being 
calculated and IV represents the ‘Initial Value’ for each of the 
value ranges.  IV stays the same for every pair, and in this study 
IV was always equal to 100.  S5 was the final step for a given 
stimulus and S1 was the initial step for a given stimulus.  So, for 
the tempo set, S1 was always 60 (representing the starting point 
of each tempo stimulus at 60 bpm) and for the frequency set S1
was always 200 (representing the starting point of each 
frequency stimulus at 200 Hz).  ‘m’ is the slope of the ideal 
mapping equation for a given data dimension generated based 
on data collected in our past work  [2].   

Figure 1:  This is an image of the interface utilized by 
participants for a given trial.  Clicking the ‘Play Sound’ 
button would play the sound stimulus for a given a trial, 
while clicking either the ‘Scenario A’ or ‘Scenario B’ 
buttons would record the participants’ choice of that value 
range as the best fit for the given sound stimulus.  This 
figure is a screenshot taken of a single trial in the error 
tempo block.  The value range located above the ‘Scenario 
A’ button is the ideal, having been generated by Equation 
(1).  The value range above the ‘Scenario B’ button goes 
from 100 to 127, which is 0.8 times the ideal value of 159. 

       For example, the equation to calculate the ideal FV for the 
positive frequency mapping for uncertainty for stimuli F1 
would be as follows: 

FV = 100 • (400/200)0.5343,    (2) 
FV = 145 

So, if our mappings are accurate, the correct value range that 
listeners perceive for uncertainty for F1 should go from 100 to 
145 (all FVs were rounded off to whole numbers).  In order to 
generate the incorrect value ranges that this ideal range would 
be compared to, FVs were multiplied by 0.8 and 1.2.  Staying 
with the current example, this would generate incorrect FVs of 
116 and 174.  If our mappings are correct, participants should 
listen to F1, be told it represents uncertainty, and select a range 
of 100 to 145 significantly more often than any of the 
‘incorrect’ values.

2.4 DESIGN 
The study was conducted entirely within-subjects with each 
participant receiving 6 trial blocks; 3 blocks utilized uncertainty 
as the conceptual dimension and 3 utilized error.  The blocks 
were presented in random order and each block contained every 
possible pairing of F1, F2, and F3 or T1, T2, and T3 (depending 
on whether it was a tempo or frequency block) with each 
possible coupling of their ideal value range and the two 
incorrect ranges.  This yielded a total of 18 trials per block,  
with 12 having a correct answer (meaning the ideal value range 
was present as an option) and 6 being ‘foil’ trials where 
participants only had the choice of either of the two incorrect 
value ranges. Within each block, the order of trials was also 
randomized. 
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Table 1: This table displays the sum of the data utilizing 
frequency as a display dimension.  Asterisks indicate statistical 
significance at the p<0.01 level.  

Table 2: This table displays the sum of the data utilizing tempo 
as a display dimension.  Asterisks indicate statistical 
significance at the p<0.01 level.  

2.5 TRIAL STRUCTURE & TASK 
Upon their arrival, participants were given oral instructions as 
to the purpose of the study and the use of the interface (see  
Figure 1).  They were also given the following written 
instructions (adapted from Walker [2]):  

You are going to be listening to several different sounds meant 
to represent either error or uncertainty.  Your task is to indicate 
which of the two data descriptions the sound best represents.  
For each trial, you can listen to the sound by clicking on the 
‘Play Sound’ button located in the top center region of the 
display.  To select which data description you feel fits the 
sound best, please click on the button below description labeled 
either ‘Scenario A’ or ‘Scenario B’.  At the end of a block of 
trials, a message will appear asking you if you would like to 
continue to the next block.  At this point, feel free to ask the 
experimenter any additional questions you have, and/or take a 
short break. When you are ready, please click ‘Yes’ to go on to
the next block of trials.  After you have finished all 6 trial 
blocks, the program will exit. At this point, please see the 
experimenter for further instructions.  

After all trial blocks were completed, participants were given a 
short demographics survey which also inquired about any past 
musical training or professional musical experience they may 
have.   

3.  RESULTS 
For each participant, performance scores were calculated for 
every trial block.  These scores consisted of the number of 
times they chose the ideal value range divided by 12(the 
number of times it was presented in a block).  The grand mean 
was then calculated for all performance scores within each 
display dimension and was compared to what would be 
expected by chance (i.e. 50% or 0.5).  For the 4 blocks where 
frequency was the display dimension, the participants selected 
the ideal or ‘correct’ mapping significantly more than chance 
[score=0.601, SD=0.1238; t(103)=8.316, p<0.0001].  For the 2 
blocks where tempo was the display dimension, this was also 

the case [score=0.601, SD=0.1303; t(51)=5.587, p<0.0001].  
Following this, each individual block was tested against chance, 
with all of their means being greater than chance, and with all 
of them being statistically significant, with the exception of the 
negative frequency mapping for uncertainty (results 
summarized in Tables 1 and 2). Furthermore, there were also 
no effects of age, gender, or musical training. 
       Performance on the ‘foil’ trials was also analyzed. These 
were the trials that contained only ‘incorrect’ value ranges.  
There was no reason to think that either of these values would 
perform any different from chance and subsequent analyses 
showed this to be the case.  
  

4.    DISCUSSION 
These results not only demonstrate that our mappings for error 
and uncertainty hold up in an applied context, but they also 
provide further support for the methodology proposed by 
Walker to both develop and test optimal sonifications [2].  This 
is also the first time this methodology has been utilized using 
stimuli composed of anything other than pure tones.  It is not 
entirely clear why the negative frequency mappings for 
uncertainty were not significant, but it is possible that this was 
due to it having the lowest r2 value of any of the other mappings 
tested (being the only mapping with an r2 below 0.90).  
However, regardless of the reasoning, it does suggest that when 
we apply these mappings in the future, we may want to avoid 
utilizing a negative frequency mapping for uncertainty in favor 
of either a positive tempo or frequency mapping. 

5. CONCLUSION 
Now that these mappings have been validated, the next step is 
to take them and apply them directly to an auditory graphs 
context in the form of an auditory equivalent to standard error 
bars and confidence intervals.  In addition, these mappings 
could also benefit current work focusing on the sonification of 
future climate data and spatial locations by providing them with 
a scaling function that directly relates user perception of 
uncertainty to variations in frequency and tempo [7] [8].
       It is often the case (as in [7] and [8]) that decisions 
regarding the creation and application of sonifications are made 
arbitrarily [9] [10] [11].  Unfortunately, this limits their utility 
outside of the specific parameters of a given study [11].  In 
order to ensure that sonifications are designed in a way that 
makes them both more intuitive and more generalizable, it
makes sense to use a standardized procedure.   Walker’s [2] 
method has been shown to develop reliable scaling functions 
that hold up in various applied contexts (including the current 
study) and  would thus be a prime candidate for a ‘standard’ 
way to create optimal sonifications [1] [2] [3].   
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