

Magnetyczne własności jąder atomowych, podstawy obrazowania rezonansu magnetycznego

Obrazowanie medyczne Inżynieria Biomedyczna

Zawartość wykładu:

- oddziaływanie statycznego pola magnetycznego na jądra atomowe
- rotacja and precesja
- wpływ elektromagnetycznych impulsów wielkoczęstotliwościowych
- zjawisko jądrowego rezonansu magnetycznego
- stałe czasowe relaksacji T1 i T2*

3

Historia rozwoju NMR/MRI

1924 Pauli - postulował istnienie dla jąder atomów wewnętrznego momentu pędu zwanego spinem	 1946 Bloch - zarejestrowano sygnał elektromagnetycznej indukcji wynikającej z reorientacji jąder 1946 Purcell - absorpcja jądrowego rezonansu magnetycznego 		1972 Demadian - opatentowanie NMR do wykrywania złośliwych tkanek 1973 Lauterbur - publikacja metody generowania obrazów przy użyciu gradientu NMR	1985 - Początek refundacji na badania MRI ~1990 - Rozpowszechnianie badań MRI
			Zmiana nazwy	/ z NMR na MRI
1937 Rabi - zmierzenie jądrowego momentu magnetycznego. Pierwszy zarejestrowany		1959 Singer - pomiar przepływu krwi przy użyciu NMR (na myszy)	1973 Mansfield - niezależnie publikuje podejście gradientowe do MR	1990 Ogawa i współpracownicy- tworzą obrazy funkcjonalne
sygnał jądroweg rezonansu magnetycznego	ю		1975 Ernst - opracowuje transformatę 2D-Fouriera dla MRI	manipulując stężeniem nieutlenowanej hemoglobiny

Budowa atomu

model atomu Bohra

Jądro (protony, neutrony)

jądro atomu wodoru, 1 proton

mechanika klasyczna proton – cząstka naładowana dodatnio, wiruje generując pole magnetyczne.

Taki "mały magnes" ma swój moment magnetyczny.

wirujący proton 🗇 spin

Inne jądra posiadające moment magnetyczny (# protonów ≠ # neutronów): ¹⁵N, ³¹P, ²³Na ¹²C i ¹⁶O nie posiadają momentu magnetycznego

Pole magnetyczne

prądowa

Ziemi, magnes, pętla

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

6

Protony w polu magnetycznym

W stanie swobodnym, momenty magnetyczne jąder atomowych są ukierunkowane chaotycznie

W obecności stałego pola magnetycznego momenty magnetyczne ustawiają się wzdłuż linii pola: równolegle (tych jest trochę więcej) lub antyrównolegle

Oprócz wyrównania wzdłuż linii sił pola magnetycznego, momenty magnetyczne protonów wykonują ruchy precesyjne wzdłuż linii pola

Analogia z wirującym bączkiem

Protony w polu magneycznym

Precesja wynika z oddziaywania sił na wirujący obiekt. Moment pędu i grawitacja powodują precesję żyroskopu; moment magnetyczny i zewnętrzne pole magnetyczne powodują precesję protonu.

Zależność pomiędzy wartością indukcji pola B [T] i częstotliwością precesji f [Hz]:

$f = \gamma B$

γ – współcczynnik giromagnetyczny

 γ (H) = 42.58 MHz/T, zatem dla typowego skanera 1.5T f \approx 64 MHz

Częstotliwość precesji to częstotliwość Larmora

Rozkład pola magnetycznego dla wszystkich protonów

low-energy spin-up nucleus low-energy spin-up population spin up nuclei Bo energy difference depends upon field strength high-energy spin-down population high-energy spin-down nucleus spin down nuclei precession spin up nuclei magnetyzacja porzeczna = 0 wynikowa magnetyzacja podłużna spin down nuclei precession

Efekt dodatkowego impulsu elektromagnetycznego

podanie impulsu RF (zmienne pole magnetyczne) o częstotliwości Larmora spowoduje wywołanie zjawiska **rezonansu**

-> energia impulsu zostanie pochłonięta przez jądra atomowe powodując, że część z nich zmieni orientację momentów magnetycznych na antyrównoległą

Efekt dodatkowego impulsu elektromagnetycznego

Zastosowanie takiego impulsu (zmienne pole magnetyczne B1) spowoduje odchylenie wynikowego wektora magnetyzacji od kierunku linii pola B

odchylenie wynikowego wektora magnetyzacji:

- maleje składowa podłużna magnetyzacji (wyrównywanie się liczby spinów w obydwu stanach energetycznych) M_z
- rośnie składowa poprzeczna magnetyzacji (fazowanie się spinów) M_{xy}

Relaksacja

Kiedy impuls zanika (B1=0) następuje powrót do stanu ustalonego

- wzdłużna magnetyzacja M_z odtwarza swoją wartość
- poprzeczna magnetyzacja M_{xv} znika
- obydwóm procesom przypisane są różne stałe czasowe T_1 i T_2

 \mathbf{B}_0 energia jest oddawana przez jądro -> generacja impulsu elektromagnetycznego M_z

Relaksacja spin – spin (poprzeczna): T₂

Jest spowodowana przez wymianę energii pomiędzy sąsiednimi jądrami (jądra posiadają swoje pola magnetyczne). Skutkuje zanikiem zgodności fazy spinów.

Wartość T2 zależy od właściwości biofizycznych tkanek, ruchliwości cząstek, gęstości "upakowania" cząstek

 T_2 [ms] dla pola 1 T

mięśnie	45
tłuszcz	84
istota biała	92
istota szara	101
płyn R-M (CSF)	1400

Zanik spójności fazy spinów zależy tak naprawdę od dwóch czynników:

- niejednorodności zewnętrznego pola magnetycznego (T₂')
- procesów wymiany energii pomiędzy sąsiednimi spinami zależnymi od ich liczby i częstotliwości oscylacji (T₂)

Obydwa procesy mają charakter wykładniczy określony przez wynikową stałą czasową

relaksacja spin – sieć (podłużna) – T₁

Przekazywanie energii do otoczenia (sieci). Następuje powrót jąder atomowych do stanu ustalonego (więcej jąder w położeniu równoległym do linii pola B)

Wartość T₁ zależy od częstotliwości oscylacji sąsiednich molekuł poruszających się bezładnym ruchem cieplnym

 T_1 [ms] dla pola B = 1 T

tłuszcz	240
mięśnie	730
istota biała.	680
istota szara	809
CSF	2500

Zmieniające się pole magnetyczne indukuje prąd w pętli przewodzącego drutu (prawo Faradaya = zasada indukcji elektromagnetycznej). Proton ma moment magnetyczny, a zatem działa jak mały magnes. Precesujące protony, których pola magnetyczne przecinają płaszczyznę cewki indukują w niej prąd elektryczny. Prąd ten jest "sygnałem" FID rezonansu magnetycznego indukowanym w cewce odbiornika – pochodzi tylko od wektora magnetyzacji poprzecznej (!?!)

- W. R. Hendee, E.R. Ritenour, Medical Imaging Physics, Wiley-Liss, 2002
- C. Guy, D. ffytche, An Introduction to The Principles of Medical Imaging, Imperial College Press, 2008
- B. Ciesielski, W. Kuziemski, Obrazowanie metodą rezonansu magnetycznego w medycynie, Tutor 1994
- C. Westbrook, C. Roth, J. Talbot, MRI in Practice, Blackwell Publishing, 2005
- H. Schild, MRI made easy (... well almost), Schering AG, 1990

