
Boundary based segmentation 
(edge detection)

Changes (or discontinuous) in an image amplitude 
are important primitive characteristics of an image 
that carry information about object borders.

Detection methods of image discontinuities are 
principal approaches to image segmentation and 
identification of objets in a scene. 

Local discontinuities in image intensity fall into three 
categories: points, lines, and edges.



Segmentation by edge detection

0 10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

220

240

Distance along profile

0 10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

220

240

Distance along profile



Point and line detection

The most common way to look for an arbitrary 
image pattern (e.g., point, or edge) is to convolve 
the image with a mask of size N1×N2 (e.g., 3×3, 
5×5).
The size of the mask and its content depends on 
the type of the detected object. 

 

W1 

W4 

W2 

W5 W6 

W3 

W8 W9 W7 



Detection masks

 

W1 

W4 

W2 

W5 W6 

W3 

W8 W9 W7 

Vector inner product of the mask coefficients with image 
gray levels covered by the mask :

zwzwzwzwzwD T
N

i
iiNN ==+++= ∑

=1
2211 L

A 3×3 detection mask



-1

-1

-1

8 -1

-1

-1 -1-1

Point detection mask:

Point detection mask

The point is rendered if:  

where D is a similarity measure 
between the image and the 
template, and T is a non-negative 
threshold.

TD>



Line detection masks

-1

-1

2

2 -1

-1

2 -1-1

-1

-1

-1

2 -1

2

-1 -12

2

-1

-1

2 -1

-1

-1 2-1

Horizontal Vertical

+45° -45°

-1

2

-1

-1 -1

-1 -1

2 2



Line detectors



Edge detection

An edge is the boundary between two 
regions with distinct gray-level properties. 

Edges characterise the physical extent of 
objects thus their accurate detection plays 
a key role in image analysis and pattern 
recognition problems. 

The main idea underlying most edge-
detection techniques is the computation of 
a local derivative of an image. 



Edge detection

“Ideal” and real edge profiles

0 10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

Distance in pixel units

?



How gradient operators work?



v

Image

First
derivative

Second
derivative

Brightness
profile

Edge
detection by 
means of
gradiant
operators

Edge
detection by 
means of
gradiant
operators



Edge detection

Note the following points about image derivative 
operators:

• the magnitude of the first derivative can be 
used to detect the presence of an edge in an 
image,

• the sign of the second derivative can be used to 
determine whether an edge pixel is on the dark 
or light side of an edge,

the second derivative has z zero crossing at the 
midpoint of a gray-level transition.



Gradient operators

















=







=∇

y

f
x

f

G

G
f

y

x

∂
∂
∂
∂

The gradient of an image f(x,y) at location (x,y) is 
defined as the vector:

The gradient vector points in the 
direction of maximum rate of change
of  at (x,y).  Magnitude of this vector, 
called simply the gradient, is computed
from:

( ) [ ] yx
/

yx GGGGfmagf +≈+=∇=∇
2122



Gradient of an image

5 10 15 20

2

4

6

8

10

12

14

16

18

20



Gradient operators

 

Z1 Z2 

Z3 Z4 

X 

Y 

3121 zzzzf −+−≈∇

3241 zzzzf −+−≈∇

Gradient for a discrete image:

or for diagonal directions:



Examples of gradiant masks

Roberts

1 0

-10

h1

0 1

0-1

h2

g(x,y) = |h1**f(x,y)| + |h2**f(x,y)|



Examples of gradiant masks

-1

0

-1

0 0

-1

1 11

-1

-1

0

0 1

1

0 1-1

Prewitt

h1 h2

g(x,y) = |h1**f(x,y)| + |h2**f(x,y)|

g(x,y) = ([h1**f(x,y)]2 + [h2**f(x,y)]2)1/2

%Matlab
h=fspecial(‘prewitt’)



Examples of gradiant masks

Sobel

1

0

2

0 0

1

-2 -1-1 h1

-1

-2

0

0 2

1

0 1-1
h2

g(x,y) = |h1**f(x,y)| + |h2**f(x,y)|

g(x,y) = ([h1**f(x,y)]2 + [h2**f(x,y)]2)1/2

%Matlab
h=fspecial(‘sobel’)



Sobel

Prewitt

Roberts

Original

Gradient images



Original

Gradient images

Roberts

Canny
Sobel

%MATLAB
I = imread(‘cameraman.tif');
BW1 = edge(I,‘roberts');
BW2 = edge(I,'sobel');
BW3 = edge(I,'canny');
figure, imshow(BW1); 
figure, imshow(BW2);
figure, imshow(BW3);



Edge detection procedure

The pixel location is considered as an edge location if 
∇f(x,y) exceeds some threshold T. Typically, T may 
be selected using the cumulative histogram of the 
gradient image.

The edge map (a binary image) gives the necessary 
data for tracing the object boundaries in an image.

 

Gx 

Gy 

G=IGxI+IGyI 
f(x,y) Edge  

map 
T 

Thresholding 

Gradient image 



Edge detection

Horizontal

Vertical



Edge detection

MATLAB

Demo



Laplacian

2

2

2

2
2

y

f

x

f
f

∂
∂

∂
∂ +=∇

( )86425
2 4 zzzzzf +++−≈∇

Laplacian of a 2-D function f(x,y) is a second 
derivative defined as:

The Laplacian of a discrete image can be approximated 
by a difference equation: 



Laplacian

-1

-1

-1

8 -1

-1

-1 -1-1

0

-1

-1

4 -1

0

-1 00

(a) (b)

Two possible versions of the Laplacian masks.

%Matlab
h=fspecial(‘laplacian’)



Gradient operators at work

-1-1-1

-18-1

-1-1-1

%MATLAB
output=filter2(h,input);

help fspecial
-1-1-1

-19-1

-1-1-1



Laplacian in frequency domain

Fourier transform of a derivative of a function

( ){ } ( ) ( )ωω Fjxf nn =ℑ

For Laplacian one gets:

higher frequency components are „amplified”.

{ } ( ) ( )yxyx ,Ff ωωωω 222 +−=∇ℑ



Laplacian

The Laplacian plays a secondary role in edge 

detection due to the following shortcomings:

• is unacceptably sensitive to noise (second 

derivative),

• produces double edges,

• unable to detect edge direction.

2

2

2

2
2

y

f

x

f
f

∂
∂

∂
∂ +=∇



Laplacian

A more suitable use of the Laplacian is in finding 
the location of edges using its zero-crossing
property. This concept is based on convolving an 
image with the Laplacian of a 2-D Gaussian 
function of the form:










 +−= 2

22

2σ
yx

exp)y,x(h

where σ is the standard deviation. Assume r2=x2+y2. 
Then, the Laplacian of h with respect to r is:











−









 −=∇ 2

2

4

22
2

2σσ
σ r

exp
r

h



-4
-2

0
2

4

-4
-2

0
2

4

0

0.5

1

XY

Z

Laplacian of a 2-D Gaussian function for σ =1 (also 
called the Mexican hat function).

Laplacian

zero crossings



Operator LoG (Laplacian of Gaussian)

%MATLAB
I = imread('saturn.tif');
h = fspecial('log',[5 5], 0.2);
I2 = filter2(h,I)/255;
imshow(I), figure, imshow(I2)



Lapalcian of an image

An image and its zero-crossings.


